
Downton, Russo, & Hopkins 
 

2019. In G. Hine, S. Blackley, & A. Cooke (Eds.). Mathematics Education Research: 
Impacting Practice (Proceedings of the 42nd annual conference of the Mathematics 
Education Research Group of Australasia) pp. 236-243. Perth: MERGA. 

The Case of Disappearing and Reappearing Zeros: A Disconnection 
Between Procedural Knowledge and Conceptual Understanding  

 
Ann Downton 

Monash University 
<ann.downton@monash.edu> 

James Russo 
Monash University 

<james.russo@monash.edu> 

Sarah Hopkins 
Monash University 

<s.hopkins@monash.edu> 

We report on 25 Year 5-6 students’ written responses to two items taken from an 
assessment of mental computation fluency with multiplication, alongside their reasoning of 
the strategy they had employed, which may or may not have made use of the associative 
property. Coding of this interview data revealed four distinct levels of conceptual 
understanding of the associative property, which teachers could use to inform their 
planning. The findings reveal the complexity associated with assessing multiplicative 
mental computational fluency and students’ reliance on procedures often considered by 
them to be more magical than logical.     

When assessing students’ mental computational skills, fluency is often associated with 
accuracy and efficiency, rather than students’ understanding of the properties associated 
with accurate and efficient strategy use, such as the distributive property and associative 
property. However, a more comprehensive construal of fluency for assessment purposes 
appears warranted, given contemporary definitions view fluency as:  

the ability to apply procedures accurately, efficiently, and flexibly; to transfer procedures to 
different problems and contexts; to build or modify procedures from other procedures; and to 
recognize when one strategy or procedure is more appropriate to apply than another (NCTM, 2014, 
p.1). 

According to Carpenter, Levi, Franke, and Zeringue (2005), procedural fluency 
includes being flexible in choosing how and when to use a procedure, but also 
encompasses aspects of relational thinking, and what Skemp (1976) described as “knowing 
what to do and why” (p. 86). Such definitions emphasise the interplay between procedural 
and conceptual knowledge for developing fluency, and exist in juxtaposition to the notion 
that fluency is about applying rote-learnt procedures, that may in fact interfere with 
developing conceptual knowledge (Mack, 2001). 

Several studies emphasise the importance of understanding how students think about 
mental computation, and the strategies they use (e.g., Clarke, Clarke, & Roche, 2011). An 
interview is a powerful tool to gain insights into student thinking and to challenge any 
entrenched procedures or misconceptions that may otherwise be overlooked; as Hurst 
(2018) found when exploring students’ procedural knowledge and conceptual 
understanding of multiplicative thinking. 

In this study, our aims were to explore how students explained a strategy that made use 
of the associative property in a mental computational task, and to investigate the extent to 
which they understood this principle.  

Background Literature 
To situate the study, we briefly review the research literature related to associativity in 

the context of multiplication, and the issue of zeros in multi-digit computation.  
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Student understanding of the associative property 
Hiebert and Grouws (2007) indicated procedural fluency and conceptual understanding 

be developed concurrently, with conceptual understanding informing the use of 
procedures. In other words, students who have strong conceptual understanding can apply 
these properties (e.g., associativity, distributivity and commutativity) to derive and predict 
unknown facts from known facts, and solve problems more quickly and with greater 
flexibility in their thinking, than those who are yet to develop conceptual understanding 
(Dowker, 2004).  

Indeed, several studies indicate that when young children learn about the operations it 
is essential that they not only learn about number facts and algorithms but also develop a 
conceptual understanding of the relevant underlying mathematical properties, which in the 
context of multiplicative concepts include commutativity, distributivity, and associativity 
(e.g., Hurst, 2018; Larsson, Pettersson & Andrews, 2017). However, there is little research 
related to students’ understanding of associativity for multiplication compared to 
commutativity and distributivity.  

Having an understanding of the associative property provides students with a range of 
efficient mental and written strategies, flexibility in their thinking, as well as knowledge of 
the structure of arithmetic (Warren & English, 2000). Carpenter, Franke, and Levi (2003) 
described the associative property as follows, “When you multiply three numbers, it does 
not matter whether you start by multiplying the first pair of numbers or the last pair of 
numbers” (p. 108). Symbolically it is represented as (ab)c = a(bc), or as an arithmetic 
example such as (2×4)×25= 2×(4×25). This property underpins the doubling and halving 
strategy. For example, to solve 16×25 a student can use their knowledge of doubling and 
halving to change it to 8×50, and then to 4×100. Essentially they are transforming the 
original problem into 4×2×2×25 using factorisation, and then applying the associative 
property to change the order of calculation (4×2×2)×25 to 4×(2×2×25) (Larsson et al., 
2017).  

However, student knowledge of the associative property is often superficial or under-
developed. Warren and English (2000) found that the majority of Year 6 students in their 
study had poor facility with the associative and commutiative properties including not 
being able to explain them.  Similarly, Hurst (2017) indicated that most students in Years 5 
and 6 had some knowledge of the properties and named them, but could not articulate an 
understanding, or make connections between them. Thompson (2008) suggested that 
teachers might themselves have limited understanding of the associative property. As a 
result, they may teach these procedures without drawing attention to the underlying 
properties, or assist students to reason about the strategies they use.  

Issue of zeros in multi-digit mental computation  
A recurring theme in the literature relating to students’ computation of multi-digit 

multiplication involving zeros is that many students appear to ignore the zeros, or remove 
them and add them back at the end of the computation, without understanding how these 
steps relate to the associative property (e.g., Hurst, 2018; Keiser, 2010; Swan & Bana, 
2000). For example, Swan and Bana found that students who used the strategy of crossing 
off and adding zeros did not appear to have any understanding as to why the strategy 
worked. When Year 5 and 6 students were asked how they would solve 400×23 some 
indicated they would do four times 23 which is 92 and then just added two zeros (Hurst, 
2018). Similarly, when asked to solve 26×45, one Year 5 student recognised that 26×45 is 
the same as 13×90, and that 13×9 would be a quicker calculation, then add a zero on the 
end to get the answer to 13× 90 (Keiser, 2010). 
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In each of the above studies, students were using (what might be considered) an 
efficient strategy for estimating two-digit multiplication problems called truncation, which 
is a strategy commonly taught to students. Truncation involves ignoring the ones digit and 
multiplying the tens digits and then adding two zeros to the product (Star, Rittle-Johnson, 
Lynch, & Perova, 2009). Others referred to this as the ‘add zero’ rule when multiplying 
decade numbers such as 2×80, by first doing 2×8=16 and then adding a zero, rather than 
seeing it as 2×8×10 (Carpenter et al., 2003). However, applying this rule does not 
necessarily promote procedural fluency (Star et al., 2009). 

One of the purposes of the current study is to add to this literature by examining 
whether the use of truncation as a strategy does in fact reflect a deficient understanding of 
the associative property, or whether students use truncation as a shortcut, however still 
possess the underlying conceptual understanding.  

Methodology 
This study is part of a larger project that investigated mental computational fluency 

with addition and multiplication in Years 3-6. The focus of this small study is on Year 5 
and 6 students’ responses in an interview about their understanding of another student’s 
mental computation strategies. 

 

Participants: There were 25 students (13 females; 12 males) in Years 5 (n = 12) and 
Years 6 (n = 13) from a single school in the Eastern suburbs of Melbourne, Victoria. In 
Victoria, students typically turn 11 years old in Year 5, and 12 years old in Year 6. The 
school was relatively socio-economically advantaged, with an ICSEA of 1141. Moreover, 
NAPLAN data indicates that this Year 6 cohort performed above similar schools and 
substantially above all schools on the Numeracy component in Year 5.  

 

Measures: Items taken from the Mental Computational Fluency Measure – 
Multiplication (MCF-M) inform the current study. The MCF-M is a 30-item measure of 
mental computational fluency. The MCF-M is similar in structure to the Mental 
Computational Fluency Measure – Addition, which has been described previously, and 
demonstrated to have excellent internal consistency (α = 0.92; Russo & Hopkins, 2018).  

The MCF-M requires students to think from the perspective of a fictional student 
named Emma. At the beginning of the assessment, students were given these instructions: 

 

Emma is good at multiplying numbers. She uses clever strategies to make 
multiplication easier. Your job is to try and think like Emma did. Explain what 
Emma did to get the number in the box. 
 

The two items of relevance to the current study are presented below. The items chosen 
represent Emma’s use of the associative property for multiplication. 

 
Item	no.	 Emma	thought…	 What	did	Emma	do	to	get	…	

	
1	 60	×	90		

is	the	same	as	
54	×	100		

	
100?	

		
2	 800	×	70		

is	the	same	as	
56	×	1000		

	
1000?	

		
       Figure 1. Two associative property items from MCF-M. 
 

Data collection: As part of a larger study, 100 Year 5 and Year 6 students from this 
school completed the MCF-M. Following completion of this instrument, 25 students were 
selected to participate in follow-up interviews in relation to five of the items (two of which 
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are described in this paper). Student selection was based predominantly on convenience 
(that is, they finished the MCF-M earlier than the allocated 40 minutes), however an 
attempt was made to ensure that a variety of students were interviewed (e.g., a balance of 
Year 5 & Year 6 students; and of males & females). The purpose of the interviews was to 
gain insights into the students’ interpretation of Emma’s thinking. Doing so provided us 
with insights into the students’ own understanding of the associative property. The student 
interviews were between 2.6 and 7.1 minutes in duration (mean = 5.1 minutes). Interview 
questions included: 

 

- Explain how you figured out what Emma was thinking for this question? 
- Did you have to change your thinking to think like Emma? In what way? 
- How would you have done this one? 
 

Data analysis: Grounded theory (Corbin & Strauss, 2015) was used to develop 
guidelines for classifying student interview responses. Initially, student written responses 
to the items were coded as correct or incorrect. Next, the first two authors independently 
read through the interview transcripts, using open coding to identify key themes related to 
each student’s mathematical thinking. In collaboration, the authors undertook an additional 
cycle of coding, refining interpretations and categories. It was during this additional coding 
cycle that it became clear that these categories represented a continuum of conceptual 
understanding of the associative property (see Figure 2). Exemplary quotes illustrating 
each of the categories are included in the results and discussion section. 

 
Figure 2. Continuum of understanding of the associative property. 

Results and Discussion  
In this section, we present the results of the initial analysis of the student responses to 

the two assessment items, followed by illustrative examples of their interview responses, 
with particular focus on the student responses that were coded as ‘magical zeros’. 

Table 1 shows the responses of the cohort [correct (C), incorrect (IC) not attempted 
(NA)] and the classification of their explanations as determined by the analysis. If students 
had an incorrect response for the first item, it was likely they would use similar thinking 
for the second item, or not attempt it.  

Level	0:	No	
evidence
•Not	attempted,	not	
elaborated,	not	linked	
to	Emma's	thinking

Level	1:	Magical	
zeros
•Moving,	or	removing	
and	adding,	zeros	
without	links	to	place	
value

Level	2:	Emerging	
understanding
•Moving,	or	removing	
and	adding,	zeros	
with	some	links	to	
place	value

Level	3:	
Established
•Articulated	
understanding	of	the	
associative	property
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Table 1. 
Responses for each item (n=25) and classification. 
Student Year 

Level 
Item 1 
60 × 90  
 same as 
54 × 100  

Item 2 
800 × 70  
same as 
56 × 1000  

Classification 

Amy 5 IC NA L0- no evidence 
Linda 6 C IC L0- no evidence 
Leo 6 IC IC L0- no evidence 
Mindy 6 IC NA L0- no evidence 
Artie 5 IC IC L1- magical zeros 
Chad 5 IC IC L1- magical zeros 
Emma 5 IC NA L1- magical zeros 
Everly 6 IC NA L1- magical zeros 
Ho 5 IC IC L1- magical zeros 
Hugh 5 IC IC L1- magical zeros 
Jim 5 IC IC L1- magical zeros 
Kai 6 IC IC L1- magical zeros 
Ken 5 IC IC L1- magical zeros 
Lauren 6 IC IC L1- magical zeros 
Mike 5 IC IC L1- magical zeros 
Omar 6 IC IC L1- magical zeros 
Richie 6 C C L1- magical zeros 
Ted 6 C C L1- magical zeros 
Annika 5 IC IC L2- emerging 
Millie 6 IC IC L2- emerging 
Sandra 6 C NA L2- emerging 
Terry 5 C IC L2- emerging 
Carrie 5 C C L3- Established 
Jye 5 C C L3- Established 
Paul 6 C C L3- Established 
 

The results indicate that, of the 25 students who completed the assessment, only eight 
students correctly responded to Item 1 and five students correctly responded to Item 2. 
Five students who were successful on the first item were also successful on the second.  

In relation to their interview responses, more than half (14 or 56%) were coded as 
Level 1: ‘magical zeros’, whereas only three students’ responses (Carrie, Jye, Paul) were 
coded as Level 3: ‘established’ (having an understanding of the associative property). 
Interestingly, the interview responses of some students whose initial responses were coded 
as correct used ‘magical zeros’ thinking (e.g. Richie, Ted), or ‘emerging’ thinking (Sandra, 
Terry). Three students (Linda, Sandra, Terry) who correctly interpreted Emma’s thinking 
for Item 1, were either incorrect or did not attempt Item 2. In the interview however, both 
Linda and Terry used the same thinking for Item 2 indicating their thinking was consistent. 

The following are examples of the students’ thinking, as classified by the authors.  
 

Level 0: No evidence: Neither responses explained the 100 in the given context. 
I just knew that 10 times 10 is 100. (Linda)       

Did 6 x 9 is 54 then timesed 54 by 100. (Leo) 

Level 1: Magical zeros: Both responses indicated the removal and return of the zeros.  
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I would have done 6 x 9 and then I would have put the two zeros on the end. (Richie) 

Do 6 x 9 first and leaves 2 zeros, they make 100 because 100 has 2 zeros. (Anika) 

Level 2: Emerging: Both responses indicate some understanding of place value. 
So like, six times nine equals 54 here, then there's two zeros left, which there are two zeros in 100, 
so then she got 100 by doing that. They (the zeros) are from like the 10s I think. These are the 10s 
of the hundreds.  So it’s like the place value. (Millie) 

I think it was like 6 times 9 equalled 54 and then you'll still have the two 10s, times them together 
would equal 100. (Terry) 

Level 3: Established: Responses indicated an understanding of the associative property.  
I know that if you do - basically 60 is 6 times 10 and then 90 is also 9 times 10 and that means if 
you do 6 times 9 that's 54.  That leaves 10 here and 10 there, which is 100. (Jye) 

For 800 x 70 she did 8 times 7 is 56 but then, instead of 10 times 10, because it's 800, there's 100 
times 10. (Carrie). 

The surprising and unexpected result was the proportion of students who used what we 
classified as ‘magical zeros’, and that for many students this type of thinking was the norm 
when engaging in mental computation, which was only revealed in an interview situation. 
The following discussion focuses on those students whose thinking was classified this way.  

Students who adopted ‘magical zeros’ thinking used predominantly spatial language 
when discussing how zeros on the end of a multiplicand or multiplier could be 
manipulated, to aide with mental computation. For these students, zeros in this context 
took on a tangible quality, which seemed largely independent of the conceptual 
mathematical relationships in which they were embedded. For example: 

There are two zeros right there for you. (Lauren). 

You take out the two zeros… put them to the side… then you just add them both on. (Richie). 

Several of these students employed this spatial language in the context of explaining 
their application of a procedure that they had been explicitly exposed to as being 
mathematically permissible. This procedure was often viewed as a fundamental rule that 
students did not challenge or question, even if they did not understand it: 

Well in maths you can do that… I normally move the zeros, that’s normally easier for me... I don’t 
know how to explain it. (Ho). 

So I just got told if there’s zero left, you just add the one and then you put the zeros there. (Omar). 

Because there’s two zeros are already there, so you can’t leave the zeros out of the sum, because 
then it wouldn’t equal the right answer. (Mike).  

The two zeros are still there, they can’t just be chucked away. (Ted). 

To exemplify how entrenched this ‘magical zero’ thinking is, we have included below 
an excerpt from Lauren’s interview. The questioning technique employed was intended to 
challenge her thinking, in particular, about ‘where the 100 came from’: 

L: She times ‘6 x 9’ to get the result of 54, and then she put the two leftover zeros and then she put a 
1 at the front so it was 100 and then you just times ‘54 x 100’, and if you do that you can just add 
two more zeros, so it’s 5400… there are two zeros right there for you. 

I: So you said she took the zeros off the 60 and the 90, then what does she do with them? 

L: She put them with another 1, which made 100. 

I: I’ll stop you there, where did the 1 come from? 

L: Because 60 and 90 are two digit numbers and it would be more than a double-digit number and 
there are two zeros right there for you. 
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I: Okay, so she put a one in front of the zeros but I am not sure where the one came from? 

L: The one came from – I am not quite sure but the only thing I can think of is they’re two digit 
numbers and that might be why. 

I: So it is something to do with two digit numbers, but you are not sure. So how would you have 
solved 60 x 90? 

L: I would have just done that but with the 54, I would not times it by 100, I would just add the 
extra zeros to make it easier. 

This excerpt highlights several aspects of Lauren’s place value understanding in 
particular her lack of understanding of quantity value. It is evident that these students have 
been taught the ‘add zero’ rule when multiplying decade numbers, but do not have an 
understanding as to why the rule works (Carpenter et al., 2003; Hurst, 2018; Swan & Bana, 
2000). So entrenched was this procedural knowledge, and possible belief that mathematics 
problems can be solved using facts and rules that even when challenged, the students were 
reluctant to question their thinking.  

It should be acknowledged that applying a procedure that involves manipulating zeros 
is perfectly acceptable, if underpinned by a conceptual understanding of the associative 
property. For example, when Jye and Carrie, two students categorised as Level 3, were 
asked how they themselves would have calculated the problems presented, both described 
truncation, that is ‘removing and adding back the zeros’, because this approach was less 
laborious than what Emma had done. However, the important point is that these students 
understood Emma’s more formal use of the associative property, as they could describe 
where the 100 (or 1000) had come from. The use of this heuristic for these students is not 
problematic, because it is not at the expense of conceptual understanding. 

Concluding Comments and Implications 
In this study we sought to investigate what sense students made of the associative 

property. We examined their use of certain procedures when reasoning about another 
student’s mental computation strategies, and the extent to which conceptual understanding 
of the associative property underpins these procedures. As indicated in other studies 
(Carpenter et al., 2005; Larsson et al., 2017; Perek & Kirshner, 2000), an understanding of 
the associative property is important to students’ understanding of multi-digit 
multiplication and students’ ability to work flexibly with numbers, as well as their 
understanding of the structure of arithmetic. Findings from this study raise questions about 
current instructional practices, and suggest that the teaching of rules without reason 
(Skemp, 1976) is still a contemporary issue. Furthermore, interviews from this study 
provided deep insights into students’ conceptual understanding of the associative property. 
The continuum that evolved from the analysis of student responses adds to the research 
literature and provides teachers with a guide when assessing students understanding, to 
inform their planning.  

We will conclude on a cautionary note. Although in the majority of instances, 
truncation as a strategy is indicative of ‘magical zero’ thinking, this was not universally the 
case. Consequently, just as we cannot infer the presence of conceptual understanding from 
the use of a particular procedure, interviews with Jye and Carrie suggest that it is equally 
problematic to conclude without further evidence that the use of a particular procedure 
reflects a lack of conceptual understanding. This is even the case if the procedure is not 
soundly grounded in mathematical principles.  
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